Element orders and Sylow structure of finite groups
نویسنده
چکیده
منابع مشابه
Classification of finite simple groups whose Sylow 3-subgroups are of order 9
In this paper, without using the classification of finite simple groups, we determine the structure of finite simple groups whose Sylow 3-subgroups are of the order 9. More precisely, we classify finite simple groups whose Sylow 3-subgroups are elementary abelian of order 9.
متن کاملA Characterization of the Small Suzuki Groups by the Number of the Same Element Order
Suppose that is a finite group. Then the set of all prime divisors of is denoted by and the set of element orders of is denoted by . Suppose that . Then the number of elements of order in is denoted by and the sizes of the set of elements with the same order is denoted by ; that is, . In this paper, we prove that if is a group such that , where , then . Here denotes the family of Suzuk...
متن کاملInvariant Sylow subgroups and solvability of finite groups
Let A and G be finite groups of relatively prime orders and assume that A acts on G via automorphisms. We study how certain conditions on G imply its solvability when we assume the existence of a unique A-invariant Sylow p-subgroup for p equal to 2 or 3. Mathematics Subject Classification (2010). Primary 20D20; Secondary 20D45.
متن کاملA new characterization of $L_2(q)$ by the largest element orders
We characterize the finite simple groups $L_2(q)$ by the group orders and the largest element orders, where $q$ is a prime or $q=2^a$, with $2^a+1$ or $2^a-1$ a prime.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2005